Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Jens K. Bjernemose,
Christine J. McKenzie* and Martin N. Mortensen

Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Correspondence e-mail: chk@chem.sdu.dk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.111$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Phenyl-1,3-bis(2-pyridylmethyl)imidazolidine

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4}$, all three substituents are found in equatorial positions. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions seem to be responsible for the packing.

Received 4 June 2003
Accepted 16 June 2003
Online 30 June 2003

Comment

Subsequent to the publication of reports on some coordination compounds with the ligand N-benzyl- N^{\prime}-carboxymethylN, N^{\prime}-bis(2-pyridylmethyl)-1,2-ethanediamine (Baffert et al., 2003), we have succeeded in crystallizing the ligand precursor 2-phenyl-1,3-bis(2-pyridylmethyl)imidazolidine, (I).

Fig. 1 shows the molecular structure of (I) with the atomnumbering scheme. The five-membered ring is in an envelope conformation, with C 3 as the apex $\left[\varphi_{2}=5.6(2)^{\circ}\right.$, total ring puckering amplitude $Q_{2}=0.3974$ (16) Å; Cremer \& Pople (1975)]. The ring has a pseudo-mirror, which includes the phenyl ring through C 3 and is orthogonal to the $\mathrm{C} 1-\mathrm{C} 2$ bond. All three substituents are in equatorial positions, and the pyridine rings are oriented in a syn fashion i.e. the two N atoms are both pointing in the same direction as the axial H atom on C 2 . The exact orientations of the central ring and substituents are summarized in Table 2, which gives the dihedral angles formed by least-squares planes through the individual rings.

Extensive $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (closest $\mathrm{H} \cdots$ Centroid contact $=2.79 \AA$) exist between the aromatic rings. Other

Figure 1
View of (I), with 50% probability displacement ellipsoids.
short contacts include N1 $\cdots \mathrm{H} 36^{i} 3.48 \AA, \mathrm{~N} 2 \cdots \mathrm{H}^{\mathrm{i}} 6^{\mathrm{i}} 3.07 \AA$, $\mathrm{N} 11 \cdots \mathrm{H} 34^{\mathrm{ii}} 2.90 \AA$ and $\mathrm{N} 21 \cdots \mathrm{H} 2 B^{\text {iii }} 2.76 \AA$ [symmetry codes: (i) $x+1, y, z$; (ii) $x-\frac{1}{2}, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $\left.-x,-y,-z\right]$. The first two result in stacking along the a axis of the unit cell.

Experimental

2-Phenyl-1,3-bis(2-pyridylmethyl)imidazolidine was prepared according to a literature method (Baffert et al., 2003). Colourless block-shaped single crystals were grown by slow evaporation of a dichloromethane solution.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4}$
$M_{r}=330.43$
Monoclinic, $P 2_{1} / n$
$a=6.003(5) \AA \AA$
$b=15.175(5) \AA$
$c=19.237(5) \AA$
$\beta=91.794(5)^{\circ}$
$V=1751.5(16) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.253 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 22931 \\
& \quad \text { reflections } \\
& \theta=2.7-26.2^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.45 \times 0.25 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD	4019 independent reflections
\quad diffractometer	2464 reflections with $I>2 \sigma(I)$
ω rotation scans	$R_{\text {int }}=0.083$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-7 \rightarrow 7$
$\quad T_{\min }=0.883, T_{\max }=0.992$	$k=-19 \rightarrow 19$
20244 measured reflections	$l=-24 \rightarrow 24$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.111$
$S=1.02$
4019 reflections
227 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0464 P)^{2}\right. \\
& +0.1083 P \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0 \\
& \Delta \rho_{\text {max }}=0.24 \mathrm{e}_{\AA^{-3}}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.2 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0053 \text { (8) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{N} 1$	$1.467(2)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.476(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.523(2)$	$\mathrm{C} 3-\mathrm{N} 1$	$1.456(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$104.64(13)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$105.09(12)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$104.28(13)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$106.04(12)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	$101.65(13)$		

Table 2
Dihedral angles formed by least-squares planes $\left({ }^{\circ}\right)$.

	B	C	D
A	$21.97(8)$	$73.97(8)$	$70.71(9)$
B		$84.34(8)$	$71.65(9)$
C		$85.44(9)$	
Least-squares planes: A N11/C12-C16, B N21/C22-C26, C C31-C36 and D N1/C1/C2/N2/			

All H natoms could be located from a Fourier difference map, but were refined with ideal coordinates and riding displacement parameters, $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-Seed (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to Professor P. R. Raithby, Department of Chemistry, University of Bath, for the use of the diffractometer, and to the referees for many helpful comments and suggestions.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Baffert, C., Collomb, M.-N., Deronzier, A., Kjærgaard-Knudsen, S., Latour, J.-M., Lund, K. H., McKenzie, C. J., Mortensen, M., Nielsen, L. P. \& Thorup, N. (2003). J. Chem. Soc. Dalton Trans. pp. 1765-1772.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

